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On the regular heptagon
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The geometry of rings with 5, 6, 7, 8 and 9 links, particularly those with seven links
such as occur in cyclo-heptane and analogous molecules∗ is re-considered with the aid of
distance geometry, now more practicable with modern mathematical software. Use is made
of a quadric surface which may be fitted to nine points.

1. Distance geometry

In considering the geometry of molecules it is convenient to use internal coor-
dinates which do not depend on a particular choice of an axial system. The most
immediately intelligible measures are bond lengths dij , bond angles θijk and torsion
angles φijkl. We will consider here only structures in three dimensions, although ref-
erence to more dimensions will be necessary. The main problem was propounded by
L.N.M. Carnot [2,3] in 1803 as: “In any system whatever of straight lines, in the
same plane or not, being given certain of their lengths, or of the angles between them,
or of the angles between planes containing them, in number sufficient to determine
the figure, find the remainder of these parameters.” For uniformity we may use only
distances, the bond angles being given by

d2
ik = d2

ij + d2
jk − 2dijdjk cos θijk.

Aijk = (1/2)dijdjk cos θijk is the area of the triangle i, j, k and Vijkl is the volume
of the tetrahedron i, j, k, l. Instead of the torsion angle φijkl (for which there are well
known but much more complicated expressions in terms of the distances), we will use
the corresponding distance dil and call it a ‘torsion distance’. In most expressions
knowledge of the chirality of tetrahedra is lost. This is a serious loss, the chief
disadvantage of systematic distance geometry, and the power of chirality considerations
has been discussed elsewhere [14]. However, when necessary, the distance matrix can

∗ In admiration for the author I have ventured to appropriate the title of Archimedes’ work “On the
regular heptagon”, which came to light only in 1926 [16]. “Regular”, as applied to rings in space
admits of various definitions.

 J.C. Baltzer AG, Science Publishers
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be factorised back (using, for example, the Cholesky decomposition) to give x, y, z
coordinates [4–6,12,13].

In particular, modern computing facilities, especially the appearance of the Math-
ematica system [19], enable us to use expeditiously the Cayley–Menger determinant,
both numerically and in algebra. The geometry of rings of 5, 6, 7, 8 and 9 links is of
some relevance in considering hypothetical carbon networks.

2. Determinantal relationships

V(N−1), the content of an (N − 1)-dimensional simplex defined by N points in
N − 1 dimensions, is given by

V 2
N−1 =

(−1)N

2N−1((N − 1)!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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. (1)

The coefficients are, for N = 3, 4, 5, 6 respectively, −1/16, 1/288, −1/9216,
1/460800.

The general form was stated by Blumenthal [1] but must have been known much
earlier, since Lagrange gave the relationship of the 10 distances between 5 points in
three-dimensional space. The relation states that the four-dimensional content of the
simplex formed by five points should be zero. It is thus∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d2
12 d2

13 d2
14 d2

15 1

d2
21 0 d2

23 d2
24 d2

25 1

d2
31 d2

32 0 d2
34 d2

35 1

d2
41 d2

42 d2
43 0 d2

45 1

d2
51 d2

52 d2
53 d2

54 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2)

For N points in three dimensions (N > 4) the rank of the Cayley–Menger
determinant is 5.

The Cayley–Menger determinant for N points can be reduced to the metric matrix
for N − 1 dimensions by subtracting the first row and column from each other row
and column. Thus, the reduced Cayley–Menger determinant for four points becomes∣∣∣∣∣∣∣
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From the cosine rule d2
23 − d2

12 − d2
13 = −2d12d13 cos θ213, etc., so that the

determinant becomes

(−2)3

∣∣∣∣∣∣∣
d2

12 d12d13 cos θ213 d12d14 cos θ214

d12d13 cos θ213 d2
13 d13d14 cos θ314

d12d14 d13d14 cos θ314 d2
14

∣∣∣∣∣∣∣ ,
which is seen to be the metric matrix for the parallelepiped with origin at (1) and axes
(12), (13), (14) the determinant of which is the square of the volume. The volume
of the corresponding simplex (here a tetrahedron), is found by dividing by (N − 1)!.
Thus, for N points in three dimensions the rank of the reduced matrix is three.

2.1. “Ptolemaicity”

Ptolemy’s theorem, relating distances between four points (1234) on a circle, has
been generalised by Blumenthal, following Cayley and others. In a cyclic quadrilateral

d12d34 + d14d23 = d13d24. (3)

This is just the particular case for two dimensions of a more general theorem. For 4
points on a circle the determinant∣∣∣∣∣∣∣∣∣∣
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This quantity has been named by Blumenthal as the “Ptolemaicity” P4.
This determinant P4 can be factorised as

(d12d34 + d23d14 + d13d24)(−d12d34 + d23d14 + d13d24)

×(d12d34 − d23d14 + d13d24)(d12d34 + d23d14 − d13d24) = 0.

The four terms are thus seen to be different expressions of Ptolemy’s theorem
covering the various permutations of the points. One at least is zero.

The condition that 5 points should lie on a sphere is known as Feuerbach’s
theorem (and was proved also by Cayley). It is∣∣∣∣∣∣∣∣∣∣∣∣
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= P5 = 0. (5)

The theorem extends to N dimensions, but Pn does not factorise for n > 4.
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Thus, for any 3 points in E1, V3 = 0. If also P3 = 0 then the 3 points lie on S0

(a line), that is, two must be coincident.
For any 4 points in E2, V4 = 0. If also P4 = 0 then the four points lie on S1 (a

circle).
For any 5 points in E3, V5 = 0. If also P5 = 0 then the five points lie on S2 (a

sphere). Thus for N points (N > 4) in 3-dimensions the determinant Pn is of rank 4.

2.2. The generalised spherometer

For the sphere of radius R circumscribing the tetrahedron (1234) we have

−2R2

∣∣∣∣∣∣∣∣∣∣∣∣
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or

−2R2 × 288× V 2
4 = P4.

We can write the factors of P4 (above) so that

36V 2R2 = σ(σ − aa′)(σ − bb′)(σ − cc′),
where

aa′ + bb′ + cc′ = 2σ

and a, a′, etc., are pairs of opposite edges of the tetrahedron, giving a solid analogy
with Heron’s formula (A2 = s(s− a)(s− b)(s− c)) for the area of a triangle in terms
of its sides a, b, c (2s = a+ b+ c).

A spherometer measures the curvature of a spherical surface, such as that of a
lens, by fitting four points to it (3 fixed points at the vertices of an equilateral triangle
of side d, and one point at its centre), the displacement x of the latter from the plane
of the triangle being measured. The radius is found from x(2R − x) = (d/

√
3)2.

Consequently, the expression above might be regarded as a generalised spher-
ometer covering any disposition of four points. This expression generalises to N
dimensions. In two dimensions the expression reduces to R = d12d23d31/(4A), the
standard expression for the radius of the circumcircle of the triangle (123).

3. Pseudo-rotation

For ring molecules which are nearly symmetrical it is convenient to express
atomic positions as displacements above and below a circle in a median plane [10]. If
atoms move up and down in this plane with phases which increase from one atom to
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its neighbour, then a wave is seen to be propagated round the ring. If the atoms are
equivalent to each other then this movement is equivalent to a rotation of the ring and
is called pseudo-rotation. For the heptagon, as in a Möbius strip the wave goes round
twice before restoring the initial conformation [9].

For chemical purposes it is useful to express the conformation of a distorted ring
in normal coordinates corresponding to possible normal modes of vibration, but we
choose not to follow this procedure here.

4. The pentagon

We may approach the geometry of the heptagon by way of the pentagon and
hexagon. In a pentagonal ring 3N − 6 = 9, but there are 10 distances so that there
must be one relationship between them. This is that the 4-dimensional content of the
simplex defined by 5 points is zero.

4.1. The equilateral, equiangular pentagon is planar

The regular equiangular pentagon is planar [8,18]. The sides are of unit length
and the bond angles correspond to distances

√
x.

For any four points of the pentagon the square of the volume of the tetrahedron
(1234) is ∣∣∣∣∣∣∣∣∣

0 1 x x 1
1 0 1 x 1
x 1 0 1 1
x x 1 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣ = 288V 2.

This multiplies out to −2x3 + 4x2 + 4x− 2 = 0, the roots of which are x = τ 2

and x = 1/τ 2. In these cases V = 0, all five overlapping tetrahedra are planar, and
so the regular pentagon as a whole is planar.

There are two flat conformations, the convex pentagon and the pentagram with
bond angles 108◦ and 36◦ respectively.

4.2. The sum of torsion angles round a general five-membered ring

For a tetrahedron (1234)

6V1234 = 4A123A234 sin φ1234/d23.

Define the sign of the volume (1234) (a tetrahedron with vertices at 000, 001, 010,
100) as positive if

V = (1/6)

∣∣∣∣∣∣∣
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

∣∣∣∣∣∣∣ .
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Points (123) are numbered clockwise looking out from the origin (a fourth index).
The figure, five points in space, can be regarded either as two tetrahedra, (1234) and
(2345) sharing the face (234), or as three tetrahedra (1235), (1245) and (1345) sharing
the edge (15). Using the convention above for the volumes numbered cyclically round
the ring (12345): −(1234), −(2345), +(3451), +(4512), +(5123). Thus, the volumes
taken with these signs sum to zero, so that, summing round the ring,

∑ |Aijk||Ajkl|
djk

sinφijkl = 0. (7)

This is a slightly more general result than that of Dunitz and Waser [7] who found that∑
sin φijkl sin θijk sin θjkl = 0 (8)

for five-membered rings with equal bond lengths. This result does not hold for six-
membered rings, but the quantity is a useful parameter of chirality and a parametrisation
of the heptagon which treats all seven torsion angles equally.

5. The hexagon

If the six interatomic distances round a hexagonal molecule and the six bond
angles are specified, then the molecule usually has no further degrees of freedom and
the six torsion angles are also fixed. For six atoms 3N − 6 = 12. It is well known
that cyclohexane has two conformations, the “boat” shape and the “chair” shape. The
former is flexible and has the symmetry 2 (maximum symmetry mm2), while the latter
has the symmetry 3̄m. Cauchy’s theorem states that for a convex polyhedron, if every
face is rigid, the polyhedron as a whole is rigid. Thus the “chair” form of cyclohexane
is kinematically similar to an octahedron and is thus rigid.

Configurations of hexagons with irregular bond lengths and angles presumably
follow these two patterns, the criterion of convexity separating them.

Figure 1 shows the relationship between the three torsion distances. It was
plotted by using the knowledge that the Cayley–Menger determinant for six points is
of rank five and that the six determinants obtained by stroking out one row and the
corresponding column are also zero. The determinant contains three unknowns, the
three diagonals of the hexagon, and two can be solved for directly with Mathematica
if one is fixed (thus fixing the shape).

Since physically the conformation of a ring depends on every member, it must
also be so mathematically and the constraints give rise to simultaneous non-linear
equations. These are best solved by successive approximations involving simultaneous
linear equations.
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6. The heptagon

Seven points require 3N−6 = 15 suitably chosen internal coordinates to define a
conformation. In a heptagon, 7 distances (round the ring) and 7 bond angles leave one
quantity lacking. The heptagon, defined in this way, thus has one degree of freedom.
Thus, it is not surprising, therefore, that [7] circulene, (a heptagon surrounded by seven
hexagons) should be floppy [17]. There are seven torsion angles all of which become
fixed when one distance is set. To find the possible combinations of distances (given
unit bond distances and fixed bond angles – here tetrahedral, 109.47◦, which fix the
corresponding torsion distances at

√
8/3) – 15 distances have been set and the 21 x,

y, z coordinates of the 7 vertices are found by repeatedly solving 15 linear equations
for 21 unknowns using the generalised inverse of a matrix with the SVD (singular
value decomposition) programme recommended by ‘Numerical Recipes’ [15]. The
centre of gravity of the molecule is fixed to prevent it from drifting away. When a
set of coordinates matching the 15 set distances has been found then the remaining
six distances corresponding to the torsion angles can be calculated. The sets of seven
distances can then be plotted against the sum of the volumes of the corresponding
tetrahedra added round the ring (figures 2a and 2b). This sum resembles the sum of
the torsion angles.

There are two conformations, corresponding to the boat and chair forms of cyclo-
hexane.

It is also illuminating to plot the torsion distances against one distance. This
shows how the shape changes as one distance is increased from minimum to maximum
(figures 3a–3c).

It is quite possible to repeat the same calculations for irregular distances but

Figure 1. In the boat form of the hexagon (with six unit bond distances and tetrahedral bond angles)
there is one parameter (here simply the length of one of the three diagonals) against which the lengths
of the three different diagonals are plotted. The maximum length is 1.99156, the minimum 5/3 and the

cross-over points are at
√

11/3 = 1.91485 and 1.751384. The chair form (with symmetry 3̄m) has three

diagonals of
√

11/3 = 1.91485 and all six vertices lie on a sphere.
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(a)

(b)

Figure 2. (a) In the heptagon (with seven unit bond distances and seven tetrahedral bond angles and with
seven torsion distances which are fixed when one torsion distance is fixed) the sum round the ring of the
volumes of successive tetrahedra gives an index against which the seven torsion distances vary as the
ring is twisted. This is a parametrisation which treats all seven torsion angles equally. (b) One torsion
distance characterises a conformation. The seven torsion distances in the heptagon can be plotted against

one torsion distance.
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(a) (b)

(c)

Figure 3. In the heptagon one torsion distance (as 14) may be plotted against the next torsion distance
(as 25)‘(a), the next but one (14 against 36) (b), or the third (14 against 47) (c). Like the Möbius strip,

two circuits are required in order to return to the starting conformation.

the plot becomes confused and less clearly informative about the process of pseudo-
rotation. We may recall that the flat heptagon with bond angles 128.57◦ has two
stellations (with bond angles 77.14◦ and 25.71◦) but that these are chemically impos-
sible. The full plot for all bond angles would be difficult to present graphically.

On the basis of numerical tests it is believed that an ellipsoid (or hyperboloid)
of revolution can be drawn through any seven points (in three dimensions). Three
quantities are needed to specify its centre, two for its proportions and two for the
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direction cosines of its axis of symmetry.
This hypothesis was tested with a computer programme which went as follows:
It is known that a quadric surface can be drawn through nine points. The equation

of the quadric is

a11x
2+2a12xy+2a13xz+2a14x+a22y

2+2a23yz+2a24y+a33z
2+2a34z+a44 = 0 (9)

(a44 may be set to 1 if the surface does not go through the origin). Each of the nine
points gives a linear equation connecting the aij and the set of nine can be solved,
using the generalised inverse to invert the matrix, most rapidly following the SVD
programme which covers the degenerate cases where the rank of the 9 × 9 matrix to
be inverted may be less than nine.

Seven points are chosen at random and the 7 × 9 matrix of seven equations is
solved for the nine coefficients of the equation above. The rank of the array is seven.
The full solution of the matrix equation A(7, 9)X(9) = H(7), putting in the dimensions
of the arrays, is, where A+(9, 7) is the generalised inverse of A(7, 9),

X(9) = A+(9, 7)H(7) +
[
I(9, 9) −A+(9, 7)A(7, 9)

]
Z(9), (10)

and where the second term represents the nullity of A and is (in general) of rank two.
Z is an arbitrary vector, which, if given all possible values, scans over all possible
solutions.

We take the second term (a 9× 9 matrix of rank 2) and find its eigenvalues and
the corresponding eigenvectors by Jacobi’s method. Two eigenvalues have the value
one and seven are zero. We take the two non-zero eigenvectors V1(9) and V2(9) and
combine them to make an arbitrary vector Z(9) by Z(9) = k1V1(9) + k2V2(9). This is
then substituted into the equation for the quadric surface. For numerical values of k1

and k2 the values of the invariants of the quadric equation can be calculated.
The shape of the quadric can be characterised by the invariants of the equation or

by the three eigenvalues of D. The invariants of the cubic characteristic equation are
T the trace, S the second invariant and D the determinant and the further condition
that two eigenvalues should be equal, that is, that the quadric should be a figure of
revolution is

D2/4 + S3/27−DST/6 − S2T 2/108 +DT 3/27 = 0. (11)

We may call this quantity R and adjust the values of k1 and k2 until R is nearly
zero. Since the two eigenvectors used are orthogonal, this process is straightforward.
Finally, the three eigenvalues of the equation for the adjusted quadric are recalculated
and two are found to be the same. Since we find in experimental cases that this can
be done, grounds for the belief that an ellipsoid (hyperboloid) of revolution can be
drawn through seven points are provided. Since this ellipsoid can be characterised by
two parameters, c/a and a, then these could be used for characterising the heptagon,
which also has two parameters, bond length and ‘shape’.

The general background is to be found under Singular Value Decomposition in
reference [15].
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7. The octagon

For an octagonal ring 3N−6 = 18 so that, after 8 bond lengths and 8 bond angles
are fixed, two degrees of freedom remain. Thus, we may fix two further distances and
examine how the remaining six torsion angles change. Conditions on the rigidity of
the octagon are more complicated. For a ring there are 8 bond lengths, 8 bond angles,
8 torsion angles and 4 cross distances. Examining the case of the tetragonal anti-
prism we see that fixing a diagonal in each of the quadrilatgeral faces allows Cauchy’s
theorem to be invoked and this particular case is rigid. Suppose that the eight points
are numbered 1 to 8 round the ring.

W.K. Clifford and A. Sylvester (1852) generalised the above determinantal ex-
pressions for volume as follows:

V1357V2468 = (1/288)

∣∣∣∣∣∣∣∣∣∣∣∣

d2
12 d2

14 d2
16 d2

18 1

d2
32 d2

34 d2
36 d2

38 1

d2
52 d2

54 d2
56 d2

58 1

d2
72 d2

74 d2
76 d2

78 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

Their result follows from the vector identity:

[a.b× c][d.e × f ] =

∣∣∣∣∣ a.d b.d c.d
a.e b.e c.e
a.f b.f c.f

∣∣∣∣∣ . (13)

When the bond lengths and bond angle distances are inserted in the above equa-
tion it is found that only the torsion ‘distances’ enter as unknowns. It thus elegantly
connects the 4 cross distances and the 8 torsion angles.

Thus, the signed volumes of the two tetrahedra making up the square faces appear
to be parameters suitable for describing a conformation, unless they are flat.

Since every distance is involved in fixing the configuration the various unknown
distances cannot be found sequentially but only by solving simultaneous polynomial
equations. Thus, the most practicable method of solution is that used in solving the
heptagon, namely to find, by iteration, a set of coordinates for the vertices which
provide the set of required distances. The programme used for the heptagon was
readily extended to do this. In using the generalised inverse the second term includes
one arbitrary eigenvector (where the heptagon requires two) which can be adjusted to
various criteria.

How should the set of 8 distances (corresponding to the 8 torsion angles) be
displayed as a function of the two parameters? Properly we require sheets with 3−D
contours but the picture becomes too complex to appreciate easily.
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8. The nonagon

For N = 9, 3N − 6 = 21 so that with 9 fixed bond lengths and 9 fixed angles
a cyclo-nonane molecule has 3 degrees of freedom. Displaying this flexibility entails
difficulties. If we can develop three parameters, such as three distances, a given
conformation could be displayed as a point in three-dimensional space, but all points
in a given region would be possible. This region of existence could be delineated.

The most general quadric surface is given by the equation (9 above) which
involves nine quantities (and an arbitrary scale). Inserting nine values of x, y and z
(9 points) gives nine linear equations which can be solved for these coefficients.

If the quadric is centred at the origin its equation reduces to

a11x
2 + 2a12xy + 2a13xz + a22y

2 + 2a23yz + a33z
2 +A/D = 0,

where A is the 4×4 determinant of the coefficients above and D is the 3×3 determinant
of the coefficients remaining.

The three eigenvalues of the quadric thus provide parameters characterising the
distribution of points in a relatively general way and corresponding to the principal
axes of the quadric.

In general, our methods of calculation do not use considerations of symmetry so
that most could be repeated for arbitrary bond lengths and angles. However, represen-
tations of the results become much less clear.

Extending the above treatment to rings of ten links takes us to the question of the
flexagons discussed as a recreation by M. Gardner. Complexity increases remarkably
rapidly with the number of vertices. For example, the complete graph of the heptagon
(21 distances) is closely connected with the Császár polyhedron [11] which has 7
vertices, 14 faces and 21 edges. It is the simplest polyhedron with toroidal topology
and has only a two-fold axis of symmetry.
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